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Genetic causes of kidney diseases are increasingly

recognized

More than 200 different inherited kidney disorders have been described.
Collectively, these disorders are involved in
up to 20% of patients with end-stage renal disease.
Some of the inherited disorders affect only a handful of people whereas

others, such as ADPKD, affect more than 750.000 patients in Europe.

Devuyst O et al. Lancet 2014; 383: 1844-59
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ERKNet

The European Rare Kidney Disease
Reference Network

ERKNet is a consortium of 38 expert
pediatric and adult nephrology centers in
12 European countries providing
healthcare to more than 40,000 patients
with rare disorders of the kidneys.
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Subtopics:

1. Next Generation Sequencing in kidney disorders
2. Novel pathways in genetic disorders
3. Polycystic kidney disease: New genes & treatment

4. New technologies
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Subtopic 1

Next Generation Sequencing in kidney disorders




State of the Art

» Genetic disorders are involved in up to 20% of adult and in the vast majority of
pediatric kidney disorders.

» Obtaining a genetic diagnosis may be critical for the management of a disease
(work-up, follow-up, prognosis,...). It will inform on disease mechanism.

* Recent advances in next-generation sequencing allow to perform genome-wide
analysis at a modest cost. Whole-exome sequencing (WES) allows selective
sequencing of the protein-coding regions of the genome, enriched for disease-
associated variants.

» Application of these methods offers perspectives for precision medicine:
individualized diagnosis and prognosis, risk stratification, and optimized work-up
and follow-up.

» The clinical utility of these approaches to a broad spectrum of kidney diseases
remains unclear.

Renkema et al. Nat Rev Nephrol 2014; 10: 433-44
Groopman et al. Nat Rev Nephrol 2018; 14: 83-104
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Next-generation DNA Sequencing

Sanger Sequencing Next-generation Sequencing
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Shendure & Ji, Nat Biotechnol 2008; 26: 1135-45
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NGS Basics | B DNA synthesis
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Ware JS et al. BMJ Heart 98: 4
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Many molecules sequenced in parallel by imaging
cyclical synthesis on a sequencing slide

l

I I Sequencing
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Each sequence fragment is bioinformatically aligned
to the genome, and potential sequence variants
identified. Here we see a possible heterozygous A>T
single nucleotide polymorphism
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Next-generation Sequencing: Impact for Rare Diseases

Development and validation of multigene panels: simultaneous investigation
of all relevant genes for a given phenotype
— Reduced costs and turn-around times

» Successful application multigene panels/NGS for diagnostic:
* Alport syndrome

« Steroid-resistant nephrotic syndrome
* Nephronophthisis - ciliopathies
e Tubulopathies

EURenOmics
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www.kidney-international.org clinical invest igation

Simultaneous sequencing of 37 genes identified
causative mutations in the majority of children with
renal tubulopathies

1,12 23,12

Emma J. Ashton ", Anne Legrand , Valerie Benoit4, Isabelle Roncelinz, Annabelle Veniss,ez,
Maria-Christina Zennaro”>>, Xavier Jeunemaitre”>”, Daniela lancu®, William G. van't Hoff’,
Stephen B. Walsh® Nathalie Godefroid'®, Annelies Rotthier®, Jurgen Del Favero®, Olivier Devuyst
Franz Schaefer'’, Lucy A. Jenkins', Robert Kleta®’, Karin Dahan®'® Rosa VargaS—PDussou2‘3‘12 and
Detlef Bockenhauer®’'*

5,10
¥

* These results demonstrate a high diagnostic yield of genetic testing in
children with a clinical diagnosis of renal tubulopathy.

* Genetic testing established a definitive diagnosis in almost two-thirds of
patients — informing prognosis, management and genetic counseling.

Ashton EJ et al. Kidney Int 2018; 93:961-7
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Multiplex Testing for Tubulopathies: Key Points

* This kit produced 571 amplicons covering 37 genes associated with
tubulopathies followed by massive parallel sequencing and bioinformatic
interpretation. ldentified mutations were confirmed by Sanger sequencing.

A genetic diagnosis was established in 64% (245/384 index patients). Most
common: 174 patients with Bartter/Gitelman syndrome and 76 with distal RTA.

» Genetic testing changed the clinical diagnosis in 16 cases (4%) and provided
insights into the phenotypic spectrum of the respective disorders.

» Thus, genetic testing helped establish a definitive diagnosis in almost two-thirds
of patients thereby informing prognosis, management and genetic counseling.

Ashton EJ et al. Kidney Int 2018; 93:961-7
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Renal Fanconi Syndrome:
Rare Disorders Targeting the Endolysosomal System

Imerslund- .
Grasbeck Cubilin Filtered

Cubilin A proteins

Endocytic
invagination

Willnow TE. Kidney Int 2017; 91:776-8

Nephro Update Europe 2018




MUTATION UPDATE H u ma n M UtatIO n HUMAN MUTATION, Vol. 36, No. 8, 743-752, 2015

Mutation Update of the CLCN5 Gene Responsible DhgE Joumalof e 234 mutations
for Dent Disease 1 Variation Society 170 families

Type of mutation (n=234)

Missense (33.33%)
Frameshift (29.05%)
Nonsense (17.52%)

Splicing (12.39%)

Large deletion (4.70%)
Inframe (2.56%)

Other (Alu insertion) (0.42%)
Novel mutations

O
49 E]%e 09«

EURenOmics Mansour-Hendili et al. Hum Mutat. 2015 Aug;36(8):743-52
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Dent Disease: Renal Fanconi Syndrome & Kidney Stones

Dent's disease is characterized by manifestations of proximal tubule (PT)
dysfunction associated with hypercalciuria, nephrolithiasis, nephrocalcinosis, and
progressive renal failure. Low-molecular-weight (LMW) proteinuria represents the

most consistent manifestation of Dent's disease, detected in almost all affected

males and obligate female carriers.

Devuyst & Thakker, Orphanet J Rare Dis 2010; 5:28
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Dent Disease: Phenotype Heterogeneity

Clinical data from 377 male patients belonging to 334 families

* Micro or macrohaematuria (n = 71)

* Polyuria/polydipsia (31/43)

* Proteinuria (n = 57): median value 1.28 g/24 hr
 Proteinuriain the nephrotic range (n = 13)

e Enuresis (n =5)

 Hypomagnesaemia (4/30)

* Night blindness responsive to vitamin A

— New phenotypes: specific management and treatment

Blanchard et al. Kidney Int 2016; 90: 430-9
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 BASIC RESEARCH | wwwiasn.org

Whole-Exome Sequencing Identifies Causative
Mutations in Families with Congenital Anomalies of the
Kidney and Urinary Tract

Van der Ven et al. J Am Soc Nephrol. 2018; 29: 2348-61

clinical investigation www kidney-international.org

Whole exome sequencing frequently detects a
monogenic cause in early onset
nephrolithiasis and nephrocalcinosis

see commentary on page 15

Daga et al. Kidney Int. 2018; 93: 204-13

Whole Exome Sequencing of Patients with
Steroid-Resistant Nephrotic Syndrome

Warejko et al. Clin J Am Soc Nephrol 2018;13: 53-62
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Number and percentage of 232 congenital anomalies of the kidney and urinary tract (CAKUT)
families in which a causative mutation in a known monogenic CAKUT gene (14%) or a candidate
gene(s) (16%) was detected by whole-exome sequencing.

(A) Causative mutation in a
known/syndromic CAKUT
gene (29/232; 13%)

(B} Causative mutation in
a phenccopy gene (3/232;
1%)

(C) Candidate

in a patient
with isolated CAKUT
(15/232; 6%)

(D) Murine CAKUT
gene (5/1232; 2%)

(E) Novel, single
candidate gene
(19/232; 8%)

candidate

(F) Novel, multiple
candidate genes per
family (22/232; 10%)

(G) Disease=causing
mutation in non=CAKUT
gene (10/232; 4%)
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L

n=232 families with CAKUT
(note that @ families had findings
in 2 calegones)

(H) No mutation detected
(129/232; 56%:)

Paajosufl

Amelie T. van der Ven et al. JASN 2018;29:2348-2361




Whole Exome Sequencing of Patients with
Steroid-Resistant Nephrotic Syndrome

: . " : :
METHODS OUTCOMES: 25% of families had a causative mutation
. detected in candidate genes
335 individ u:alls NPHS1 (4%,
from 300 families Unsolved (44%) n=13 PLCE1 (3.7%), n=11
with steroid e PHS20278, w8
s SMARCALT (2.7%),
resistant s
nephrotic e
l’ syndrome | (1%, n=34
Whole exome Aneihae
$ sequencing
N performed
‘ Total families: ovel candidate gene(s)
n= 300 identified (28%), n=84
Variant
calling and CONCLUSION A potentially causative genetic mutation can be
v filterin identified in many patients with steroid-resistant nephrotic syndrome.

Jillian K. Warejko, Weizhen Tan, et al. Whole Exome Sequencing of Patients with Steroid-Resistant
Nephrotic Syndrome. CJASN doi: 10.2215/CJN.04120417.
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ORIGINAL RESEARCH Annals of Internal Medicine

Whole-Exome Sequencing in Adults With Chronic Kidney Disease
A Pilot Study

» Aim: To study the diagnostic utility of WES in a selected referral population of adults with CKD.

» Observational cohort in a major academic medical center. 92 adults with CKD of unknown cause or
familial nephropathy or hypertension (enriched cohort).

» Whole-exome sequencing provided a diagnosis in 22 of 92 patients (24%), including 9 probands with
CKD of unknown cause and encompassing 13 distinct genetic disorders.
— COL4A3/4/5, LMX1B, GLA, CHD7, CLCN5, HNF1B, UMOD, SCNN1G, SLC12A3, TRPC6

» The results affected clinical management in most identified cases, including initiation of targeted
surveillance, familial screening to guide donor selection for transplantation, and changes in therapy.

Whole-exome sequencing identified diagnostic mutations in 24% of adults with CKD of many causes.
Promising — needs further study of the utility of WES for patients with CKD.

Lata et al. Ann Intern Med 2018; 168: 100-9
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Take-Home Messages

« WES can provide a molecular-level diagnosis, supporting its utility as part of the clinical
diagnostic work-up.

« Diagnostic yield varies according to the type of disorder (pediatric development,
tubulopathies, ...)

e Limits of WES: Not uniform coverage
— difficulty to cover some coding segments (ex: PKD1, MUC1)
Limited ability to detect genomic imbalances, does not assess
mutations in non-coding regions

Difficulties to test adults, segregation

* Incidental findings (BRCAZ2, ...)

* Interpretation of genomic findings: ExXAC, gnomAD (frequency in population)

New variant annotation algorithms

» Screening more relevant genes at once — genetic diagnosis, novel phenotypes
 Periodic reevaluation when new disease genes identified
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Subtopic 2

Novel pathways in genetic disorders




State of the Art

» The complexity of glomerular and tubular structures is reflected by the large
number of disease mechanisms involved in kidney disorders.

» Analysis of rare inherited kidney disorders (< 1:2,000) offers the opportunity to
decipher complex mechanisms operating in various nephron segments.

* In turn, these advances may yield new therapeutic targets — with innovative
compounds or repurposed drugs (already used in other indications).

 Mechanisms involved in rare diseases are often relevant for more common,
complex and acquired disorders.

Devuyst et al. Lancet 2014; 383: 1844-59
Eckardt et al. Lancet 2013; 382: 158-69
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BASIC RESEARCH | www.jasn.org

A Single-Gene Cause in 29.5% of Cases of
Steroid-Resistant Nephrotic Syndrome

* In young adults and children, nephrotic syndrome is classified by its response to a standardized steroid
therapy as steroid-sensitive NS (SSNS) versus steroid-resistant NS (SRNS).

* SRNS constitutes the second most frequent cause of ESRD in the first two decades of life
(NorthAmerican Pediatric Renal Trials and Collaborative Studies, 2008).

* For most patients, no curative treatment is available.

» Discovery of 27 recessive or dominant genes that, if mutated, cause SRNS has recently provided
fundamental insights into mechanisms of this disease.

NGS in 1783 unrelated, international families with SRNS — 27 genes known to cause SRNS
— ~30% of diagnosis: many more genes to discover

Sadowski et al. JASN 2015; 26: 1279-89
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RESEARCH ARTICLE The Journal of Clinical Investigation

Mutations in sphingosine-1-phosphate lyase cause
nephrosis with ichthyosis and adrenal insufficiency

* WES in 7 families with syndromic SRNS: Recessive mutations in SGPL1

* ER enzyme — final catabolic step of sphingolipid breakdown pathway

» Degrading sphingosine-1-phosphate (S1P) : multiple roles

» Mutation: altered sphingolipid catabolism & ceramide composition — podocytes & other cell types

ER

Sphingolipid catabolism
1 CDase oK fHexadecenal and
Ceramide T— Sphingosine T—> —-
R «— R phosphoethanolamine

CS SPP l
Podocytes, mesangial
.l cells, endothelial
cells, adrenal gland,
immune cells, skin

GPCR

Cell differentation, survival and/or migration

Lovric et al. J Clin Invest 2017; 127: 912-28; Devuyst O. Nat Rev Nephrol 2018; 14: 80-82
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ARTICLE
opEN
Mutations in six nephrosis genes delineate a

pathogenic pathway amenable to treatment

Shazia Ashraf et al.*

* WES identified recessive mutations in six different genes (MAGI2, TNS2, DLC1, CDK20, ITSN1, ITSN2)
causing NS in 17 families with partially treatment-sensitive NS (pTSNS).

» These proteins interact and play a role in Rho-like small GTPase (RLSG) activity in podocytes. The mutant
proteins are defective. They impact on the phenotype of podocytes (migration, focal adhesions, filipodia)

» Treatment with dexamethasone abolishes RhoA activation by knockdown of DLC1 or CDK?20, indicating
that steroid treatment in patients with pTSNS and mutations in these genes is mediated by this module.

*These data define a functional network of RhoA regulation, with potential therapeutic targets.

Ashraf et al. Nat Commun 2018; 9: 1960
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Mutated Gene Products Interact to Regulate RhoA/Rac —
Cytoskeletal Activation in Podocytes

P MaGE
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Ashraf et al. Nat Commun 2018; 9: 1960
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Cystinosis: Lysosomal Storage Disease

Healthy Cystinosis
Vacuolar ATPase Cystinosin Cystinosin mutation
H* ATP

ADP , 0
+Pi

“ .4
{.ﬂ' .[I._fl
0 ‘E'a[:

(o il
.» Accumulation

£ of cystine

Autosomal recessive mutations in CTNS:
- Functional loss of cystinosin

- Defective cystine efflux from lysosomes
- Intralysosomal cystine accumulatlon

- Formation of cystine crystals

» Multisystemic — kidney, brain, eyes, muscles, endocrine,
* Cysteamine: limited effective, side-effects, poor tolerance

Devuyst O et al, Volume 383, Issue 9931, 24—-30 May 2014, Pages 1844-1859
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Time-course of Renal Phenotype in Nephropathic Cystinosis

PREVALENCE IN
AGE SYMPTOM OR SIGN AFFECTED PATIENTS
%

6-12 mo Renal Fanconi’s syndrome (polyuria, 95

polydipsia, electrolyte imbalance, de-

hydration, rickets, growth failure)
5-10 yr Hypothyroidism 50
8-12 yr Photophobia 50
8-12 yr Chronic renal failure 95
12-40 yr Myopathy, difficulty swallowing 20
13—-40 yr Rerinal blindness 10-15
18—-40 yr Diabetes mellitus 5
18—40 yr Male hypogonadism 70
21-40 yr Pulmonary dystfunction 100
21-40 yr Central nervous system calcifications 15
21-40 yr Central nervous system symptomatic 2

deterioration

Early dysfunction of proximal tubule — before renal failure |

Gahl WA et al. NEJM 2002; 347: 111-21
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Autophagy: a Vesicular Membrane Trafficking Targeting
Cellular Materials to Lysosome

Inducer of Cytosolic
autophagy proteins and

organelles
N2

Phagophore

Mizushima N et al., Cell 2011; 147: 728-41
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ARTICLE
OPEN

Impaired autophagy bridges lysosomal storage
disease and epithelial dysfunction in the kidney
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MATURE COMMUNICATIONS | (2018)9:161
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MitoTEMPO: mitochondrially targeted antioxidant, scavenger of mitochondrial superoxide
Combination of antioxidant piperidine nitroxide + lipophilic cation triphenylphosphonium
Ability to pass through lipid bilayers and accumulate several hundred-fold in mitochondria

O
+
I )
>?j< i
N
O-
— Neutralizing mitochondrial ROS improves epithelial function in cystinosis.

Festa BP et al. Nat Commun 2018; 9: 161
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Mutations in Chloride Channels Cause Primary Aldosteronism

I Aldosterone

Renal sodium
channels

Sodium retention

Kidney

Decreased | Angiotensin Il
blood pressure g Increased blood
T volume
l | Angiotensin |

Increased blood

- pressure
Renin e
= | Angiotensinogen

Role of aldosterone in blood pressure regulation
Primary aldosteronism:
Autonomous aldosterone production

Most common form of secondary hypertension =

5% of hypertensive patients
Increased CV risk

Mutations in genes coding for K* and Ca?* channels,
ATPases and CYP11B2 (aldosterone synthase) A=

Aldosterone-producing adenomas

b @na glomerulosa ] Zona fasciculata

( Cholesterol Cholesterol ]
¥ ~———— & —— ¥

[ Pregnenoclone | | Pregnenolone J
y—o —

[ Progesterone ) ( Progesterone ]
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{ Corticosterone
y—o

[18—hydroxycorticosterone |
y—

Aldosterone Corticosterone

B
a

N}
B e MR s °
B[ #Rfe Y

1B-HSD2

Rossier BC. Nat Med 2010; 16: 27-28

LUMEN I Principal Cell _J SEROSA

cortisol
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Scholl et al. Nat Genet 2018; 50: 349-54
Fernandes-Rosa et al. Nat Genet 2018; 50: 355-61

A gain-of-function mutation in the CLCN2 chloride
channel gene causes primary aldosteronism

b K

K™ channels

a Ang K*

@ K channels

Aldosterone

Voltage-gatad
Ca™ channels

Voltage-gated
Ca®* channels

Role of chloride and chloride channels in aldosterone biosynthesis — adrenal cortex |
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Take-Home Messages

* NGS and WES allowed to detect new pathways which operate in various cell types and
cause various forms of nephrotic syndrome (steroid-response, syndromic). These pathways
include altered sphingolipid catabolism & ceramide composition; and a multi-protein
component of the cytoskeleton of the podocytes.

» The endolysosomal system sustains the reabsorptive activity of proximal tubule cells.
Lysosomal storage diseases such as nephropathic cystinosis cause a massive losses of vital
solutes in the urine. New studies show a link between defective lysosome-autophagy
degradation pathways, accumulation of dyfunctional mitochondria and epithelial dysfunction.
Treatment with mitochondrial anti-oxidant rescues the epithelial dysfunction.

* Primary aldosteronism (PA) is the most common and curable form of secondary arterial
hypertension. Heterozygous, activating mutations in the CLCN2 chloride channel operating
in the adrenal glomerulosa cells have been identified in individuals with PA, increasing the
expression of aldosterone synthase and causing an autonomous production of aldosterone.
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Subtopic 3

Polycystic kidney disease: New genes & treatment




Autosomal Dominant Polycystic Kidney Disease

» Most frequent inherited nephropathy (1:400 - 1:1,000)

» Enlarged kidneys, multiple cysts < tubules

» Responsable for 4 - 10% of patients on dialysis — transplantation

» Genetic heterogeneity: PKD1 (~75%) — PKD2 (~15-18%)

» Third gene: GANAB — ER enzyme glucosidase IlI, quality control (Mild PKD — PLD)

— Women

Kidney Volume (ml)

T T T T T T T T T
10 15 20 25 30 35 40 45 50
Age (yr)
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Pathways Modulated in ADPKD

[ Reduced in PKD
[ Increased in PKD

i v

Rheb] Nucleus
Protein
AN mT_DR translation

(mTORinh)

—@/ N~
V2R

$
Vasopressin (V1a)
Ca®* (CaR)

Torres VE et al. Lancet. 2007; 369: 1287-301
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o Tolvaptan in Patients with Autosomal
European Medicines Agency Dominant Polycystic Kidney Disease

Vicente E. Torres, M.D., Ph.D., Arlene B. Chapman, M.D.,
Olivier Devuyst, M.D., Ph.D., Ron T. Gansevoort, M.D., Ph.D.,
Jared ). Grantham, M.D., Eiji Higashihara, M.D., Ph.D., Ronald D. Perrone, M.D.,
Holly B. Krasa, M.S., John Ouyang, Ph.D., and Frank S. Czerwiec, M.D., Ph.D.,
for the TEMPO 3:4 Trial Investigators™®

Vasopressin type 2

Vasopressin receptor amagonist
CE o é? D
q:'vz receptor —lql
1] — ] 27/02/2015
Jinarc recommended for approval in ADPKD
A in-2 .
@/ S bl The EMA has recommended granting a
I ] l 1 marketing authorisation to Jinarc (tolvaptan).
7 Jinarc is indicated to slow the progression of
ghsiococt Lo cyst development and failing kidney function in
* Concentrated * Dilute urine a_dUIt pgtlents Wlt_h ADI_DKD' .
urine * Increased free Jinarc is for use in patients with normal to
b U e e aco moderately reduced kidney function who have
water clearance » Raising of . .
* Lowering of serum sodium rapldly progressing ADPKD.
serum sodium

Torres VE et al. NEJM 2012; 367: 2407-18
Rosner MH. Kidney Int 2012; 82:1154-6
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Case T. D. - 32 years-old

MRI — TKV
Semi-auto point counting

Re__gi on
' REIN DRT

Volume (ml) Mean Valu

1266.26 384 +212

BE REINGCHE 154556  52.4 265

Total

 2811.82




Case T. D. - 32 years-old

Class 1E

Class 1D

Class 1C

Class 1B

Class 1A

15 20 26 30 35 40 45 50 55 60 65 70 75 80
Patient Age (years)

Irazabal MV, et al. (2015) J Am Soc Nephrol. 26(1):160-72

ADPKD & tolvaptan medical education program



Tolvaptan in Later-Stage Autosomal
Dominant Polycystic Kidney Disease

Vicente E. Torres, M.D., Ph.D., Arlene B. Chapman, M.D.,
Olivier Devuyst, M.D., Ph.D., Ron T. Gansevoort, M.D., Ph.D.,
Ronald D. Perrone, M.D., Gary Koch, Ph.D., John Ouyang, Ph.D.,
Robert D. McQuade, Ph.D., Jaime D. Blais, Ph.D., Frank S. Czerwiec, M.D., Ph.D.,
and Olga Sergeyeva, M.D., M.P.H., for the REPRISE Trial Investigators*

1370 patients, 18-55 years, eGFR 25-65; 56-65 years, eGFR 25-44 |

Torres et al. NEJM 2017; 377: 1930-42
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Decrease of Renal Function (eGFR) during the Study

TN
\ T
F S
-14
£ Tolvaptan
T 7. O i —
84 =2.34 ml/min
m £ %
5 R 5
E.::“ a4 | B L P<0.001
SE ’
= =
U E
E“ -4 Placebo
= =3.61 ml/min

-2 -1 0 1 2 3 4 5 [ 7 o] Q 10 11 12 Fulluw-up
Visit (mo)
Torres et al. NEJM 2017; 377: 1930-42
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Long-term administration of tolvaptan in autosomal
dominant polycystic kidney disease

TOLVAPTAN /" CONTROL )
o sliatans \/\ From Baseline From Month 1
LU M 50.018 -1.97+2.44 |-3.50 = 2.09
' " ' eGFR slope mL/min/1.73 m? per year mL/min/1.73 m2 per year mL/min/1.73 m? per year
6 Tolvaptan \_ (p < 0.001) )

n = 97 ADPKD patients H

Single Center &\ 0-63 0.53
1.1-11.2 years 33% reduction (95% CI 0.38, 0.98) (95% CI 0.31, 0.85)
(Average 4.6 years) in eGFR RISK RATIO

Tolvaptan related events

i — L A o

analysis Polyuria Fatigue Reversible Transaminase
elevations

| Marie Edwards, Fouad Chebib, Maria Irazabal, Troy Ofstie, Lisa Bungum, Andrew Metzger, Sarah Senum,
Marie Hogan, Ziad El-Zoghby, Timothy Kline, Peter Harris, Frank Czerwiec, and Vicente Torres. Long-
term Administration of Tolvaptan in Autosomal Dominant Polycystic Kidney
Disease. CJASN doi: 10.2215/CJN.01520218

Marie E. Edwards et al. CJASN 2018;13:1153-1161
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Venglustat : Mechanism of Action

Venglustat

Glucosylceramide
Synthase

Ceramide + X Glucosylceramide
G | ucose Building block for more complex
glycosphingolipids
Mutant GCase* ,|,

Rare storage disorders:
Fabry, Gaucher (3)
Parkinson’s disease

Venglustat inhibits GCS, resulting in decreased production of
glucosylceramide (GL-1, GlcCer)

GCase, glucocerebrosidase; GCS, glucosylceramide synthase
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Inhibition of glucosylceramide accumulation results
in effective blockade of polycystic kidney disease in

mouse models
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|Sphingm;inel

Sphingosine kinase
Sphingosine-1-P

Natoli et al. Nat Med 2010; 16: 788-792
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Further genetic heterogeneity Monoallelic Mutations to DNA/BT 1

in ADPKD Cause Atypical Autosomal-Dominant
Cornec-Le Gall et al. (Am J Hum Genet. 2018;102:832-844; https://doi . . .
org/10.1016/jajhg 2018.03.013) P0|ycyStIC Kldney Dlsease

Family 1

.
I D—‘;
] ﬁEIWT

£
c161C>G; p.P54R

* Less than 10% of ADPKD families are negative for PKD1, PKD2, GANAB.

» Pathogenic variants in DNAJB11 detected in 7/593 negative pedigrees.

* Atypical of ADPKD : cystic kidneys, not enlarged, only 7/23 subjects reached ESRD, age 59 to 89 years.
* Interstitial fibrosis: possible overlap with autosomal-dominant tubulointerstitial kidney disease (ADTKD).

» DNAJB11 encodes a co-factor of the heat shock 70 kDa (HSP70) chaperone BIP (for binding
immunoglobulin protein), which regulates the folding, oligomerization, trafficking, and degradation of proteins
in the lumen of the ER; mutations cause impaired secretory/maturation of proteins.

These studies confirm the involvement of defective ER quality control mechanisms in a set of disorders
associated with polycystic kidney and liver manifestations.

Cornec-Le Gall et al. Am J Hum Genet 2018; 102: 832-44
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Take-Home Messages

» The REPRISE trial showed that tolvaptan resulted in a slower decline than placebo in the eGFR over a
1-year period in patients with later-stage ADPKD. Elevations in the ALT/AST occurred in 5.6% of
patients. Such elevations were reversible after stopping tolvaptan.

» 128 patients with ADPKD, Mayo Clinic, tolvaptan: Follow-up for up to 11.2 years (average 4.6 years)
showed a sustained reduction in the annual rate of eGFR decline in patients treated with tolvaptan
compared with controls and an increasing separation of eGFR values over time between the two groups.

* Kidney glucosylceramide levels are higher in human and mouse PKD tissue as compared to normal
tissue. Blockade of GlcCer accumulation with the GlcCer synthase inhibitor effectively inhibits
cystogenesis in mouse models of human PKD. Studies will start to evaluate the therapeutic potential for
glycosphingolipid modulation as a new approach to treat PKD, based on repurposing inhibitors of GlcCer
synthesis (Venglustat).

» The discovery of mutations in DNAJB11 in a small proportion of patients with (atypical) ADPKD
confirms the involvement of defective ER quality control mechanisms in a set of disorders associated
with polycystic kidney and liver manifestations.
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New technologies




Kidney Disorders: Multi-omics Technologies
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Devuyst O et al, Volume 383, Issue 9931, 24-30 May 2014, Pages 1844-1859
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Defining Glomerular Disease in Mechanistic Terms:
Implementing an Integrative Biology Approach in
Nephrology

Laura H. Mariani,* William F. Pendergraft lll," and Matthias Kretzler*

Identification of putative risk factors,
pathogenic pathways or molecules,
prognostic biomarkers

A 4
Validation in |dentification of relevant Mechanistic-based
model systems patient subgroups interventional clinical trials

'\\_;:%/:'Q\ ’-“—"?1.;3{. ] ‘AVaV|
Clin | Am Soc Nephrol 11: 2054-2060, 2016.
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Advantages of Zebrafish as Model Organism

* |n vivo model — whole organism (in petri dish)

* Transparent (imaging)

 Genome sequenced, easy to edit (KO, MUT)

e Transgenic lines

» Low cost for fish breeding: small size, high fertility
* No ethics concerns at embryo stage (up to 7dpf)

« Conservation of key transporters/receptors - patterning
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Zebrafish: Model for Proximal Tubule

Somite Pronephros
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Poureetezadi et al. Kidney Int 2016; 89: 1204-10
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ctns KO larvae: zebrafish model of cystinosis

» Cystine accumulation (5dpf)
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Zebrafish models: Perspectives
for Drug Discovery
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Urine-derived induced pluripotent stem cells as a modeling tool
to study rare human diseases
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Shi et al. Intractable Rare Dis Res 2016; 5: 192-201
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ARTICLE

Patient-iPSC-Derived Kidney Organoids Show
Functional Validation of a Ciliopathic Renal Phenotype
and Reveal Underlying Pathogenetic Mechanisms

Thomas A. Forbes, .23 Sara E. Howden,!2 Kynan Lawlor,! Belinda Phipson,# Jovana Maksimovic,*
Lorna Hale,'? Sean Wilson,! Catherine Quinlan,’%3 Gladys Ho,> Katherine Holman,>

Bruce Bennetts,>¢7 Joanna Crawford,® Peter Trnka,®19 Alicia Oshlack,%* Chirag Patel,!!

Andrew Mallett,'%12 Cas Simons,® and Melissa H. Little!2*
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